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1 Dynamic programming: An example

Here we see how to solve an infinite Ramsey model with full depreciation δ = 1 using backwards
induction. This method has to do with iterating the value function up to a point where we are able to
see the long term properties of the decision rule and the value function itself.

1.1 Problem set up

We set up an economy where one-infinitely living individual tries to maximize his consumption stream.
Mathematically we have:

Max
{ct,kt+1}∞t=0

U =

∞∑
t=0

βt ln ct (1)

subject to
ct = Akαt − kt+1 (2)

where k0, A ≥ 0, α ∈ (0, 1) and β ∈ (0, 1).

1.2 Value Function Iteration

The value function for a random period t is

Vt = Max
{it}

ln(Akαt − it) + βVt+1 (3)

Now we change the horizon. We set a period T as if it were the last period this individual will face
and we start solving problem from T back.

1.2.1 Period T

For period T the Bellman equation in (3) becomes:

VT = Max
{iT }

ln(AkαT − iT ) + βVT+1 (4)

and here we have the first problem. We do not know the value of VT+1. But we know the invidual
values nothing any consumption beyond the end of his life, therefore kT+1 = 0 = iT and VT+1 = 0. If
we maximize1 (4) we find that the value at T is

VT = lnA+ ln kαT (5)

and the decision rule tells the individual not to invest at all

iT = 0 (6)

1.2.2 Period T-1

We start solving for period T − 1 using the same procedure. Let us write the Bellman equation for
this period.

VT−1 = Max
{iT−1}

ln(AkαT−1 − iT−1) + βVT

but now we do know the value of VT . If we plug it in the above equation we get closer to something
we can maximize

VT−1 = Max
{iT−1}

ln(AkαT−1 − iT−1) + β lnA+ β ln kαT

Still we have an unknown term, kT . But we can use the law of motion that says kT = iT−1. Let us
put this piece of information in the value function to maximize it:

VT−1 = Max
{iT−1}

ln(AkαT−1 − iT−1) + β lnA+ β ln iαT−1 (7)

1Actually we cannot maximize a constant, it is the value itself what we get
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and the first order neccesary condition becomes

∂U

∂iT−1
= − 1

AkαT−1 − iT−1
+

αβ

iT−1
= 0

Rearrange this equation so as to obtain an expression with iT−1 as a function of current capital and
other parameters like

iT−1 =
αβAkαT−1

1 + αβ
(8)

Finally we need the solution for the value at T − 1. We have to plug (8) into (7) to obtain

VT−1 = ln

(
AkαT−1 −

αβAkαT−1
1 + αβ

)
+ β lnA+ β ln

(
αβAkαT−1

1 + βα

)α
develop the neperian logs and simplify for kT−1

VT−1 = ln
A

1 + αβ
+ β lnA+ αβ ln

αβA

1 + αβ
+ α(1 + αβ)kT−1 (9)

We are ready to proceed to the next step but although the above equation is what we need to assess
the trend of the value function at the end of the example it is not very handy to work with. We will
use a simpler equation grouping all the constant terms together

VT−1 = C +D ln kT−1

1.2.3 Period T-2

Here we follow the steps we undertook when we solved for T − 1. Let us start with the Bellman
equation for T − 2.

VT−2 = Max
{iT−2}

ln(AkαT−2 − iT−2) + βVT−1

again we know VT−1 so let us use it -the short one of course-.

VT−2 = Max
{iT−2}

ln(AkαT−2 − iT−2) + βC + βD ln kT−1

and make use of the law of motion kT−1 = iT−2

VT−2 = Max
{iT−2}

ln(AkαT−2 − iT−2) + βC + βD ln iT−2 (10)

the first partial derivative with respect to investment yields:

∂U

∂iT−2
= − 1

AkαT−2 − iT−2
+

βD

iT−2
= 0

the solution depends on D

iT−2 =
βDAkαT−2

1 + βD

if we substitute for D we have the decision rule:

iT−2 =
(βα+ (βα)2)AkαT−2

1 + βα+ (βα)2
(11)

Now we need the value of the Bellman equation at T − 2. Plug the decision rule that contains D in
equation (10).

VT−2 = ln

(
AkαT−2 −

βDAkαT−2
1 + βD

)
+ βC + βD ln

(
βDAkαT−2

1 + βD

)
Now we will obtain two equations. A value as a function of the model parameters and current capital
and another value as a function of two new black boxes E and F. The latter can be done from the
above equation using some properties of the logs:

VT−2 = ln
A

1 + βD
+ βC + βD ln

βDA

1− βD
+ α(1 + βD) ln kT−2
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group all the constant terms altogether and obtain the equation we need to keep iterating

VT−2 = E + FkT−2

and the complete equation, after a sizeable amount of algebra becomes (be patient if you want to work
this out)

VT−2 = ln
A

1 + αβ + (αβ)2
+β ln

A

1 + αβ
+β2 lnA+αβ2 ln

αβA

1 + αβ
+αβ(1+αβ) ln

βα(1 + αβ)A

1 + αβ + (αβ)2
+α(1+αβ+(αβ)2) ln kT−2

(12)
If we look at this equation we will be able to find 4 patterns. The first is made of the first 3 terms, the
second one is the fourth term, the third comes from the fifth term and finally we have the recursive
equation with the capital. Actually what we have is enough to capture the long-run properties of
the model but you may not neccesarily know this so let us check there is no new pattern in the next
iteration before solving for the limit.

1.2.4 Period T-3

First things first, the Bellman equation for T − 3:

VT−3 = Max
{iT−3}

ln(AkαT−3 − iT−3) + βVT−2

Now we use VT−2, again, the short one, to obtain:

VT−3 = Max
{iT−3}

ln(AkαT−3 − iT−3) + βE + βFkT−2

and finally let us make use of the law of motion, kT−2 = iT−3

VT−3 = Max
{iT−3}

ln(AkαT−3 − iT−3) + βE + βFiT−3 (13)

Derive with respect the control variable and we have

∂U

∂iT−3
= − 1

AkαT−3 − iT−3
+

βF

iT−3
= 0

Solve for iT−3

iT−3 =
βFAkαT−3

1 + βF

Now plug F in the above equation to obtain the decision rule at period T − 3

iT−3 =
(αβ + (αβ)2 + (αβ)3)AkαT−3

1 + αβ + (αβ)2 + (αβ)3
(14)

We will be no longer iterating so we just need the real expression of the value function at T − 3. In
order to obtain so we have to plug C,D,E and F in VT−3

2. After tons of careful rearrangements and
some algebra we obtain the following expression:

VT−3 = ln

(
A

1 + αβ + (αβ)2 + (αβ)3

)
+ β ln

(
A

1 + αβ + (αβ)2

)
+ β2 ln

A

1 + βα
+ β3 lnA

+β2αβ ln
αβA

1 + αβ
+ βαβ ln

(αβ + (αβ)2)A

1 + αβ + (αβ)2
(15)

+(αβ + (αβ)2 + (αβ)3) ln
A(αβ + (αβ)2 + (αβ)3)

1 + αβ + (αβ)2 + (αβ)3

+(1 + αβ + (αβ)2 + (αβ)3) ln kαT−3

2Actually there is no C in VT−3 but it is inside E.
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1.3 Arbitrary t and limit solution

We are almost done. We just need to take a look at the two things we are interested in; the decision
rules and the value functions we have obtained in the last section. Let us start with the former.
Equations 6,8,11 and 14 contain the decision rules we have obtained so far. Following the pattern we
can obtain the closed-loop solution for an arbitrary t as:

kT−t+1 = iT−t =
AkαT−t

∑t
i=1(αβ)i

1 +
∑t
i=1(αβ)i

(16)

and the solution when t tends to infinite becomes:

lim
{t→∞}

kT−t+1 = lim
{t→∞}

iT−t = αβAkαT−t (17)

Now it is time for the value function. Remember when building this function that there are 4
recursives equation inside the value function, or in other words, we have to work out 4 expressions
with a sum. For an arbitrary t the value function looks as follows:

VT−t =

t∑
i=0

βi ln

(
A∑t

i=0(αβ)i

)
+

t∑
i=0

βi+1αβ ln

(
A
∑t
i=0(αβ)i+1∑t
i=0(αβ)i

)
+ (18)

t∑
i=0

(αβ)i+1

(
ln

(
A
∑t
i=0(αβ)i+1∑t
i=0(αβ)i

))
+ ln kαT−t

t∑
i=0

(αβ)i for all t ≥ 2

Finally we have to apply the geometric series formula repeatedly so as to obtain the value when t tends
to infinity.

lim
{t→∞}

VT−t =
lnA(1− αβ)

1− β
+
αβ ln(Aαβ)

1− β
+

ln kα

1− αβ
(19)

where I have merged the second and the third expressions in (18) after simplifying.
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